Swelling induced detachment of chondrocytes using RGD-modified poly(N-isopropylacrylamide) hydrogel beads.

نویسندگان

  • Mee Ryang Kim
  • Ji Hoon Jeong
  • Tae Gwan Park
چکیده

Thermally sensitive poly(N-isopropylacrylamide, NIPAAm) hydrogel beads conjugated with a cell adhesive motif, GRGDY, were prepared and utilized as cell culture substrate for chondrocytes. They were produced to be uniform in size and distribution by using calcium alginate as a temporal mold. The RGD moieties were introduced, in a spatially selective manner, to the surface of the beads by conjugating GRGDY under the precollapsed state at a higher temperature above the lower critical solution temperature (LCST). These RGD-conjugated polyNIPAAm beads demonstrated a reversible swelling and deswelling behavior around the LCST, which enabled the chondrocytes attached on the surface of collapsed beads at 37 degrees C to readily detach when the temperature was shifted below 37 degrees C. The cell detachment percentage was largely affected by the temperature-dependent reswelling extent of the collapsed RGD-modified beads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivation, characterization and expansion of fetal chondrocytes on different microcarriers.

Fetal chondrocytes (FCs) have recently been identified as an alternative cell source for cartilage tissue engineering applications because of their partially chondrogenically differentiated phenotype and developmental plasticity. In this study, chondrocytes derived from fetal bovine cartilage were characterized and then cultured on commercially available Cytodex-1 and Biosilon microcarriers and...

متن کامل

Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi-IPN beads.

A series of semi-interpenetrating, polymer network (semi-IPN), hydrogel beads, composed of calcium alginate (Ca-alginate) and poly(N-isopropylacrylamide) (PNIPAAM), were prepared for a pH/temperature-sensitive drug delivery study. The equilibrium swelling showed the independent pH- and thermo- responsive nature of the developed materials. At pH=2.1, the release amount of indomethacin incorporat...

متن کامل

Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment.

Using surface initiated atomic transfer radical polymerization (ATRP) and an injection method, a poly(N-isopropylacrylamide)-b-poly(acrylic acid)-g-RGD (PNIPAAm-b-PAA-g-RGD) gradient surface was prepared. First, a thermoresponsive surface with a constant thickness of PNIPAAm was fabricated, onto which the AA monomers were block copolymerized using the PNIPAAm macromolecules as initiators. Durin...

متن کامل

Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties

Introducing multifunctional groups and inorganic material imparts xylan-based hydrogels with excellent properties, such as responsiveness to pH, temperature, light, and external magnetic field. In this work, a composite hydrogel was synthesized by introducing acid treated carbon nanotubes (AT-CNTs) into the maleic anhydride modified xylan grafted with poly(N-isopropylacrylamide) (MAX-g-PNIPAM) ...

متن کامل

Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture.

Large-scale cell culture of anchorage-dependent cells based on microcarriers is a crucial method for industrial-scale cell culture and large-scale expansion of therapeutic cells. Previously, the authors developed temperature-responsive microcarriers bearing poly(N-isopropylacrylamide) (PIPAAm)-grafted chains on their outer surface for the non-invasive detachment of cultured cells through temper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2002